Обеспечение безопасности

УДК 331.821.004.413.4(018) © Коллектив авторов, 2010

ВНЕДРЕНИЕ МЕТОДОЛОГИИ АНАЛИЗА ОПАСНОСТЕЙ НАZOP ПРИ ПРОЕКТИРОВАНИИ НЕФТЕГАЗОВЫХ ОБЪЕКТОВ КОМПАНИИ ТНК-ВР

М.В. Лисанов, д-р техн. наук, директор центра анализа риска

В.В. Симакин, канд. техн. наук, зав. отделом (ЗАО НТЦ ПБ)

E.B. Ханин, ст. науч. сотрудник

А.П. Елаев, гл. специалист (ОАО «ТНК-ВР Менеджмент»)

The results of practical use of Hazard and Operability Analysis (HAZOP) methodology during designing TNK-BP oil and gas facilities are given in the Article.

Ключевые слова: анализ опасностей, НАХОР, отклонение, рекомендации.

рименение методов качественного (инженерного) анализа опасностей — обязательная процедура анализа и обоснования безопасности в зарубежной практике проектирования объектов нефтегазовой и химической промышленности и регламентируется многочисленными документами государственных органов и компаний (например, сайт http://en.wikipedia.org/wiki/Hazop).

В нашей стране, несмотря на описание таких методов в РД 03-418—01, ГОСТ Р 51901.1—02, ГОСТ Р 51901.11—2005 (МЭК 61882:2001), практически их применяют почти исключительно в рамках политики зарубежных компаний (Shell, Exxon, ТНК-ВР и др.), участвующих в инвестиционных работах при проектировании опасных производственных объектов на территории России [1, 2].

Наиболее распространенный для таких целей метод HAZOP (Hazard and operability studies — анализ опасностей и работоспособности) систематически используется в компании THK-BP с 2007 г. на основе стандарта «Техническое руководство по HAZOP. Анализы функциональности оборудования и потенциальных рисков производственного процесса».

Анализ HAZOP в компании THK-BP является обязательным при выполнении всех проектов с высоким уровнем капитальных затрат, а также проектов, сложных или стратегических, независимо от общего уровня капитальных затрат, а именно: для новых проектов опасных производственных объектов обустройства месторождений со сложными технологическими системами;

для действующих объектов, если на них планируется выполнить объемную реконструкцию или техническое перевооружение, риски которых необходимо оценить (например, изменение технологического процесса, изменения в системе управления и (или) автоматизации, замена оборудования конструктивно отличного от существующего);

для действующих объектов после аварий (инцидентов), требующих переоценки технологических рисков, в целях проведения детального исследования используемой технологии, оборудования и систем автоматизации технологического процесса, выявления нарушений технологической безопасности и достаточности предусмотренных мер защиты.

Всего в компании ТНК-ВР приняты три этапа анализа безопасности качественными методами, которые охватывают весь жизненный цикл проекта:

HAZID (Hazard identification study — идентификация опасностей) проводится при выборе предпочтительных вариантов проектирования и размещения объекта (этап «Выбор»);

НАZOP (этап «Определение») осуществляется на момент проектирования до сдачи проектной документации на экспертизу в государственные органы;

HAZOP (этап «Реализация») — анализируется безопасность на стадии строительства объекта.

Цели HAZID:

выявление рабочей группой специалистов источников опасностей и определение последствий их реализации посредством анализа инфраструктуры, площадки, установки, участка, включая особенности окружающей местности и расположение иных объектов;

регистрация классифицированных рисков и рекомендаций для использования их в предстоящих обзорах по безопасности;

передача рекомендаций проектной организации в целях дальнейшего их использования при выполнении проектных работ, на последующих стадиях, позволяющих устранить или смягчить воздействие потенциально опасных факторов на персонал, население, окружающую среду и технологическое оборудование.

Цели HAZOP на этапе «Реализация»:

анализ рабочих чертежей проекта, прошедших корректировку по предыдущим обзорам безопасности, и извлеченных уроков;

исследования качества технологического регламента, рабочих технологических схем, схем трубной обвязки и КИПиА, схем систем инженерного обеспечения с применением стандартных процедур НАZOР для выявления потенциальных отклонений;

выезд и обследование рабочей группой НАZOР строящегося производственного объекта.

Основная идея (выгода) проведения анализов безопасности — выявление отклонений или источников опасностей в проектной документации и устранение или смягчение проявления их последствий. Проще и дешевле выполнить это на бумаге, чем исправлять обнаруженные ошибки после пуска объекта в эксплуатацию.

Методология HAZOP основана на систематизированном применении ключевых (управляющих) слов — комбинации технологических параметров («давление», «температура» и пр.) и их отклонений («нет», «больше», «меньше» и др.) при анализе опасностей этих отклонений при эксплуатации.

В результате в настоящее время методом НАZOP в ТНК-ВР проанализировано около 130 проектов технологических объектов добычи, подготовки нефти и газа, поддержания пластового давления нефтепроводных систем. В большинстве случаев анализ повторялся в целях повышения качества проекта.

Практическая процедура HAZOP основана на разработанной Системе управления проектами и организации HAZOP THK-BP (PMD-00-P350-000-PR-PRO-0001-D — PA3PAБОТКА СИСТЕМ УПРАВЛЕНИЯ ПРО-ЕКТАМИ ТНК-ВР) с применением ряда руководящих документов, в том числе:

Технического обзора до проведения HAZOP (PMD-00-P350-000-PR-GDN-0002-D);

Анализа HAZOP (PMD-00-P350-000-PR-GDN-0001-D);

Обзора проекта и ситуационного плана (PMD-00-P350-000-PR-GDN-0003-D).

В ТНК-ВР также разработана система подготовки и обучения специалистов НАZOP в регионах компа-

нии, в том числе председателей и независимых инженеров силами специалистов соответствующих подразделений, которые предварительно прошли обучение и были сертифицированы международными организациями.

Для выработки ключевых слов и оформления результатов анализа ТНК-ВР применяется программа, управляющая оболочка которой показана на рис. 1.

Процедура HAZOP на этапе «Определение» имеет следующие особенности. Начальный этап анализа — определение узлов и границ каждого узла на технологических схемах и схемах КИПиА (P&IDs), перечень и границы которых подготавливаются заранее председателем HAZOP и представляются для ознакомления и уточнения рабочей группе. Каждый узел обозначается на схемах своим цветом с помощью маркерной ручки (рис. 2).

На совещании, проводимом обычно в течение четырех-пяти дней, учитываются результаты ведомственной («внутренней») экспертизы, в том числе замечания заказчика. В состав рабочей группы (5–10 чел.) входят председатель, секретарь, независимые инженеры, проектировщики, специалисты по направлениям (технологи, энергетики и т.д.), представители заказчика и эксплуатационной организации. Совещания проходят в отдельном помещении, оборудованном флипчартом, досками, компьютерным проектором, настенным экраном для показа рабочих таблиц (рис. 3).

Анализ HAZOP в границах исследуемого узла состоит из обсуждения рабочей группой и записей в таблицы следующих основных этапов:

обнаружение вероятных отклонений и причин возникновения источника опасности;

исследование каждого отклонения источника опасности с применением ключевых слов и параметров технологического процесса;

определение последствий каждого отклонения (источника опасности);

установление достаточности мер защиты исследуемого узла (т.е. мер защиты, предусмотренных проек-

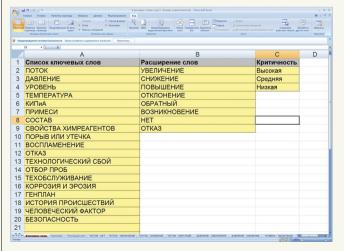


Рис. 1. Вид управляющей оболочки программы для проведения **HAZOP**

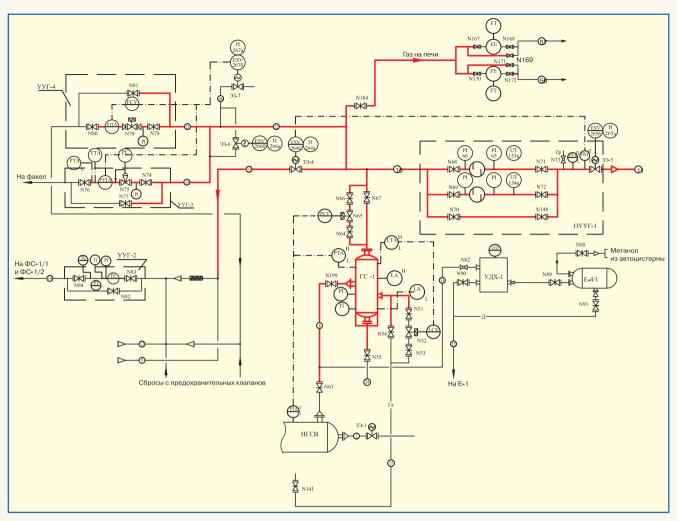


Рис. 2. Пример выделенного узла для анализа НАЗОР (красный цвет)

Рис. 3. Рабочий момент совещания по НАZOP

том, в том числе предотвращающих или сигнализирующих об отклонении);

предлагаемые меры в виде рекомендаций, направленных на устранение выявленных отклонений (источника опасности) или снижение последствий их проявления;

назначение лица, ответственного за выполнение каждой рекомендации (эксплуатирующая организация/проектный институт — ПИ);

коллективное принятие решения по степени критичности рекомендации исходя из трех категорий риска— высокая, средняя и низкая;

коллективная проверка и корректировка записей в рабочей таблице;

коллективное принятие решения о переходе к исследованию следующего узла.

Дополнительно исследуются:

генеральный и ситуационный планы с указанием на них зон воздействия поражающих факторов возможных аварий (взрыв, пожар) для оценки характерных факторов риска и возможности нанесения ущерба персоналу, населению, окружающей среде;

системы инженерного обеспечения: сброса давления, дренажа, факельная, инертного газа, пожаротушения, энергоснабжения, защитного заземления, противоаварийной защиты противопожарной автоматики, оповещения и сигнализации.

Перечень узлов (пример) для дожимной насосной станции (ДНС) представлен в табл. 1.

Фрагмент рабочей таблицы НАZOP представлен в табл. 2.

В процессе обсуждения рабочей группой информации по каждому отклонению определяется их кри-

Таблина 1

			таблица т
Номер узла	Название узла	Границы узла	Объект
Узел 01	Блок подачи деэ- мульгатора	На входе: задвижка № 94 — вход реагента на УДХ-2 На выходе: УВР, задвижка № 93 — выход из УДХ-2	Первая ступень сепарации
Узел 02	Блок хранения реагента E-4/2	На входе: задвижка № 92 — подключение к внешнему источнику На выходе: задвижка № 94, 95 — выход из E-4/2	
Узел 03	Узел подогрева- теля продукции скважин	На входе: задвижки № 185, 186 — вход продукции скважин На выходе: э/задвижка ЗЭ-10,11 — выход из печи; задвижки № 168-172 — выход топливного газа с узла учета	
Узел 04	Узел сепарации продукции сква- жин	На входе: э/задвижка 3Э-10,11 — выход из печи На выходе: по нефти — задвижки № 3, 4, 97, 166 по воде — задвижки № 34, 35 по газу — задвижки № 63, 87, 96 по дренажу — задвижки № 56, 57, 47, 98	
Узел 05	Узел сбора и подачи нефти	На входе: задвижки № 3, 4 На выходе: по нефти — задвижки № 11, 14, 191, 194 по газу — задвижка № 83 по дренажу — задвижка № 58	
Узел 06	Узел перекачки нефти	На входе: задвижки № 191, 194 На выходе: задвижки № 3Э-3, 15, 19	Система внеш- него транс- порта
Узел 07	Узел эжектирова- ния газа	На входе: задвижки № 15, 19 На выходе: задвижки № 166, 131	Подготовка и учет газа
Узел 08	Узел сепарации газа	На входе: задвижка № 63 На выходе: по нефти — задвижка № 141 по газу — задвижки № 3Э-5, 167, 170, 81, 78, 74, 77, на вход УУГ-2 по дренажу — задвижка № 55	
Узел 09	Факельное хозяй- ство	На входе: все входы с УУГ, линий сброса с СППК, линии сброса с ФС и КС На выходе: оголовок Ф-1, 2	Факельное хо- зяйство
Узел 10	Узел дренажной системы	На входе: все выходы дренажных сбросов в емкости Е-1, 2, 3, 4 На выходе: задвижки № 40, 42, 45, 183	Дренажная си- стема
Узел 11	Узел сброса под- товарной воды	На входе: задвижки № 34, 35 На выходе: задвижка № 44	Система водо- подготовки
Узел 00	Генеральный план	Границы площадки	Площадка ДНС

Таблица 2

Ключевое слово:		ДАВЛЕНИЕ СНИЖЕНИЕ							
№ Причина		Последствия	Меры защиты	Рекомендация	Ответ-	Кри-	При-		
					ственный	тич- ность	меча- ния		
1	Уменьшение подачи газа с НГСВ	Безопасность: нет Окружающая среда: нет Эксплуатация: ущерб пред- приятию за счет недопостав- ки газа потребителю	Установлены датчики давления РІТА 131а, сигнализация нижнего предела давления, регулирование клапаном № 65	3) установить обратный кла- пан на линии № 15	ПИ	Высо- кая			
2	Закрытие задвижек № 63 или № 199	Безопасность: нет Окружающая среда: нет Эксплуатация: ущерб пред- приятию за счет недопостав- ки газа потребителю	Установлены датчики давления РІТА 131а, сигнализация нижнего предела давления, регулирование клапаном № 65; установлена сигнализация уровня верхнего и нижнего предела	4) рассмотреть возможность сброса газоконденсата в дренажную емкость E-1	ПИ	Высо- кая			

тичность и вырабатываются рекомендации в случае недостаточности или отсутствия мер защиты от возможных негативных последствий отклонения, влияющих на:

безопасность (т.е. отклонение может реально привести к аварии, поражению персонала);

окружающую среду (выброс опасных веществ, загрязнение);

эксплуатацию (нарушение технологического режима, остановка производства, убытки предприятия).

Категория критичности определяет приоритет рекомендаций и сроки их выполнения исходя из следующих требований:

высокая — запрещается переходить на следующую стадию проекта, не выполнив рекомендации высокой категории критичности;

средняя — рекомендация среднего уровня должна быть выполнена до начала пусконаладочных работ; низкая — рекомендация должна быть выполнена до начала эксплуатации.

То есть рекомендации, имеющие уровень «высокий» реализуются в проектной документации, направляемой на государственную, промышленную или

стей не только в стандартах компаний и предприятий, но и в руководящих документах Ростехнадзора в развитие требований к составу проектной документации [3], а также в технических регламентах по безопасности химических, нефтехимических и нефтеперерабатывающих производств, объектов добычи и переработки углеводородного сырья.

Таблица 3

Заголовок иссоледования:		Проект № 00 дения» (ДНС	Дата: 04-08.10.2010				
Состав группы:		Лисанов М.В выдов К.Е., Р В.М., Егоров и др.					
Nº	Node/Узел	Guideword/ Ключевое слово	Cause/ Причина	Consequence/Последствия	Recommendation/ Рекомендации	Responsibility/ Ответствен- ный	Criticality/ Критич- ность
41	Сепара- ция газа Узел № 08 (цвет красный)	ДАВЛЕНИЕ УВЕЛИЧЕ- НИЕ	Перекрытие клапана регулятора № 65	Безопасность: возможность возникновения аварийной ситуации Окружающая среда: нет Эксплуатация: нарушение технологического режима	52) установить электро- контактный манометр, сигнализирующий об ава- рийном превышении дав- ления	пи	Высокая
42	Сепара- ция газа Узел № 08 (цвет красный)	ДАВЛЕНИЕ СНИЖЕНИЕ	Уменьше- ние пода- чи газа с НГСВ	Безопасность: нет Окружающая среда: нет Эксплуатация: экономический ущерб предприятию из-за недопоставки газа потребителю	53) установить обратный клапан на линии № 15	ПИ	Средняя
43	Сепара- ция газа Узел № 08 (цвет красный)	ТЕМПЕРА- ТУРА СНИ- ЖЕНИЕ	Сниже- ние тем- пературы окружаю- щей сре- ды	Безопасность: нет Окружающая среда: нет Эксплуатация: нарушение технологического режима	54) определить расчетом необходимый расход метанола в зависимости от объема газа 55) отразить результаты расчетов в технологическом регламенте	ПИ	Низкая

иную обязательную экспертизу; «средний» — в рабочей проектной документации; «низкий» — в эксплуатационной документации (технологический регламент, ПЛАС, инструкции).

Все рекомендации по HAZOP детально рассматриваются, проходят коллективную проверку и корректировку и заносятся в сводную таблицу (пример, табл. 3).

Общее число рекомендаций обобщается в общей таблице (пример, табл. 4) для дальнейшего анализа и контроля и представляется вместе с описанием объекта, файлами рабочих таблиц, сводными рекомендациями и иными материалами в отчете по HAZOP по установленной форме.

Проектные ошибки и отклонения, выявленные в ходе анализа НАZOP и признанные типовыми, передаются в эксплуатирующую организацию и проектные институты для дальнейшего применения в идентичных проектах. После анализа отчетных материалов они передаются в ОАО «ТНК-ВР Менеджмент».

Представляется очевидным введение обязательности проведения таких процедур анализа опасно-

Таблица 4

				•
Всего иссле-	Общее коли-	Степень критичности		
довано узлов	чество выдан-	рекомендаций		
	ных рекомен-	высокая	средняя	низкая
	даций			
10	78	22	37	19

Список литературы

- 1. *Применение* методов анализа опасностей HAZID и HAZOP при проектировании газотранспортного терминала/ М.В. Лисанов, В.В. Симакин, А.И. Макушенко и др. //Безопасность труда в промышленности». 2008. № 8. С. 63–69.
- 2. *Анализ* опасности и риска аварий при эксплуатации аммиачно-холодильной системы АО «МИКОМС»/ М.В. Лисанов, С.М. Лыков, А.С. Печеркин, В.И. Сидоров // Химическая промышленность. 1996. № 9. С. 27–34.
- 3. Постановление Правительства Российской Федерации от 16 февраля 2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию» (с изм. на 13 апреля 2010 г.); Рос. газ. № 41. 2008. 27 февр.; № 83. 2010. 20 апр.

risk@safety.ru